## edexcel

Mark Scheme (Results)
Summer 2015

Pearson Edexcel International GCSE Chemistry (4CH0) Paper 1C Science Double Award (4SC0) Paper 1C

Pearson Edexcel Level 1/Level 2 Certificate
Chemistry (KCHO) Paper 1C Science (Double Award) (KSC0) Paper 1C

## Edexcel and BTEC Qualifications

> Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere
Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www. pearson.com/uk

Summer 2015
Publications Code UG041123
All the material in this publication is copyright
© Pearson Education Ltd 2015

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| $1 \quad \text { a i }$ | six circles separated from each other | Accept minimum of 4 complete circles <br> Ignore size and shape of circles <br> Ignore arrows and other symbols implying <br> movement <br> Ignore a pattern <br> Reject any touching circles <br> Reject circles joined by bonds <br> No penalty for half-circles at edges of square | 1 |
| ii | B (They move randomly in the liquid state) |  | 1 |
| $\begin{gathered} \text { ii } \\ \text { i } \end{gathered}$ | D (melting) |  | 1 |
| b i | B (condensing and evaporating) |  | 1 |
| ii | D ( $N_{2}(\mathrm{I})$ ) |  | 1 |
|  |  | Total 5 marks |  |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 2 a | $\begin{array}{lll} \text { M1 } & \text { C } & \text { (Bromine has a darker colour than air) } \\ \text { M2 } & \text { D } & \text { (Bromine vapour diffuses upwards) } \end{array}$ |  | 2 |
| b i <br> ii | C <br> M1 ammonia (particles/molecules) travels/diffuses faster / further in same time (than hydrogen chloride) <br> M2 (because of) lower $M_{r}$ | Do not penalise ammonia atoms / ammonium (ions) / ammonia solution in place of ammonia <br> If incorrect choice in (i), then no marks in <br> (ii) <br> If no answer in (i), mark on <br> If C appears in (ii), mark can be awarded in <br> (i) <br> Accept smaller/lighter / ammonia less dense <br> Reject ammonia molecules etc less dense Ignore references to kinetic energy Accept reverse argument for hydrogen chloride / hydrochloric acid for both M1 and M2 | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ |
|  |  | Total 5 marks |  |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 3 a | M1 bright / white / blinding AND flame / light (OWTTE) <br> M2 white solid | Accept answers in either order <br> Ignore shines / glows / sparks <br> Accept burns brightly <br> Reject other colours <br> Accept smoke / powder / ash / deposit in place of solid <br> Reject precipitate in place of solid Ignore grey <br> Ignore name of product and equation Ignore references to decrease in amount of magnesium / heat given off | 2 |
| b | C (a basic oxide formed from a metal) |  | 1 |
| c i <br> ii | blue <br> hydroxide (ion) / $\mathrm{OH}^{-} / \mathrm{HO}^{-}$ | Ignore shades <br> Ignore purple <br> Reject all other colours <br> Mark (i) and (ii) independently <br> Ignore OH | $1$ <br> 1 |
|  |  | Total 5 marks |  |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 4 a | $\mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{CaSO}_{4}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq})$ | All four must be correct to score Do not penalise upper case letters | 1 |
| b |  | M1 filter paper in filter funnel Do not penalise inappropriate size <br> M2 everything else correct Not essential that funnel touches flask Reject beaker/tube for M2 Ignore labels Ignore relative sizes | 2 |
| c i <br> ii | $\mathrm{Ca}^{2+} /$ calcium (ion) <br> calcium sulfate/ $\mathrm{CaSO}_{4}$ is partially/slightly soluble OR <br> contains unreacted/excess calcium chloride/ $\mathrm{CaCl}_{2}$ (solution) | Reject Ca with incorrect or missing charge Mark (i) and (ii) independently <br> Accept unreacted/excess calcium ions | $1$ $1$ |



| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 5 a i <br> ii | $\begin{aligned} & \mathrm{C}_{5} \mathrm{H}_{12} \\ & \\ & \mathrm{CH}_{2} \mathrm{Br} \end{aligned}$ | Accept $\mathrm{H}_{12} \mathrm{C}_{5}$ <br> Ignore gap between $\mathrm{C}_{5}$ and $\mathrm{H}_{12}$ <br> Ignore names <br> Ignore $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n+2}$ <br> Accept elements in any order <br> Ignore molecular formula <br> Ignore $2 \mathrm{CH}_{2} \mathrm{Br}$ <br> Penalise inappropriate use of upper or lower case letters or numbers(eg $\mathrm{CH} 2 \mathrm{Br} / \mathrm{CH}_{2} \mathrm{BR} / \mathrm{CH}^{2} \mathrm{Br}$ ) | 1 <br> 1 |
| b i <br> ii | $\begin{aligned} & R \text { and } U \\ & D \quad\left(C_{n} H_{2 n}\right) \end{aligned}$ | Accept in either order | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ |
| c | C (compound $\mathrm{R} \rightarrow$ compound Q) |  | 1 |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 5 d |  <br> M2 <br> (1,2-)dibromoethane | Mark M1 and M2 independently <br> Accept Br atoms in any positions so long as on different carbon atoms <br> Ignore any numbers <br> Accept ethylene dibromide | 2 |
| e i <br> ii <br> iii <br> iv |  <br> bromomethane <br> UV or ultraviolet (light/radiation) <br> D (substitution) | Ignore balancing in equation Ignore molecular formula <br> Accept sunlight Ignore all references to heat and temperature Ignore references to pressure | 1 <br> 1 <br> 1 |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 5 f i | M1 setting out division of each \% by $A_{r}$ OR evaluation <br> M2 simplest whole number ratio (1:2:1 or ratio shown in notes for M1) <br> M3 $\quad \mathrm{CH}_{2} \mathrm{~F}$ $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~F}_{2}$ | Award $0 / 3$ if division by any atomic numbers / wrong way up / multiplication used <br> Do not penalise roundings or minor misreads of \% values (eg 56.7 for fluorine) <br> Do not penalise use of Fl in (i) <br> If molecular masses used for H and/or F , lose M1 but M2 and M3 can be awarded: using 2 and 38 gives $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~F}$ using 2 and 19 gives CHF <br> Using 1 and 38 gives $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~F}$ <br> Working required for these answers <br> M2 subsumes M1 <br> Accept elements in any order <br> Award 3 marks for correct final answer with no working <br> Accept elements in any order <br> Do not accept $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Fl}_{2}$ | 3 |
|  |  | Total 15 | marks |


| Question <br> number | Answer | Notes | Marks |
| :---: | :--- | :--- | :---: |
| 6 a | (A) $\quad$ refinery gases <br> (F) $\quad$ bitumen | 2 |  |
| b | M1(compound/molecule/substance <br> containing) <br> carbon and hydrogen/C and H <br> (atoms/elements) <br> M2 only | Reject atom/element/ion/mixture in place of <br> compound/molecule/substance <br> Reject compound/molecule/substance in place of <br> atom/element <br> Ignore references to bonds / long chains <br> Accept other terms with same meaning, eg solely / <br> exclusively / just <br> M2 DEP on mention of carbon and hydrogen/C and H and <br> no other element | 2 |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 6 c | (fuel oil molecules/it/they) <br> M1 have higher boiling points <br> M2 are darker (in colour) <br> M3 have higher viscosities / are more viscous | Accept converse statements about gasoline <br> Ignore reference to melting points <br> Ignore stronger / more intense (colours) <br> If specific colours stated, award M2 if valid comparison, eg gasoline is yellow and fuel oil is brown, fuel oil is browner <br> Accept thicker/stickier/flows less easily, etc in place of more viscous <br> If gasoline, accept thinner/runnier/flows more easily, etc in place of less viscous <br> Must be a comparison, eg not enough to say fuel oil has a high boiling point unless also a statement that gasoline has a low boiling point <br> MAX 2 if no comparison <br> Accept reference to fractions near the top/up the column in place of gasoline <br> Accept reference to fractions near the bottom/down the column in place of fuel oil | 3 |


| di <br> ii <br> iilica / silicon dioxide $/ \mathrm{SiO}_{2}$ <br> OR <br> alumina / aluminium oxide / $\mathrm{Al}_{2} \mathrm{O}_{3}$ <br> $\mathrm{M1}$ <br> M 2 $\mathrm{C}_{2} \mathrm{H}_{4}$ | $\mathrm{C}_{3} \mathrm{H}_{6}$ | Accept aluminosilicate(s)/zeolites | 1 |
| :---: | :--- | :--- | :---: |
| Ignore silica oxide and alumina oxide |  |  |  |
| Accept in either order |  |  |  |
| Award 1 mark for $\mathrm{C}_{4} \mathrm{H}_{8}$ and $\mathrm{CH}_{2}$ | 2 |  |  |


| Question <br> number | Answer | Notes | Marks |
| :--- | :--- | :--- | :---: |
| ii | e $\quad$ i | insufficient/lack of air / oxygen OWTTE | Accept oxygen not in excess <br> Reject no oxygen <br> decreases capacity of blood (cells) to <br> carry oxygen <br> OR <br> stops blood (cells) from carrying oxygen |
| Accept CO combines with haemoglobin / forms <br> carboxyhaemoglobin <br> Accept CO displaces/replaces oxygen in haemoglobin <br> Ignore CO combines with red blood cells <br> Ignore references to suffocation / lack of oxygen in lungs <br> stopping breathing / gas exchange <br> Ignore just affects haemoglobin <br> Reject destroys haemoglobin <br> Mark all parts independently | 1 |  |  |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| $\begin{array}{llll}6 & \mathrm{f} & \mathrm{i} \\ & & \\ & & \\ & \text { ii }\end{array}$ | M1 sulfur dioxide AND sulfur trioxide in correct order <br> M2 sulfuric acid <br> M1 acid rain <br> M2 specific adverse effect on specific object | Accept names with correct oxidation states <br> Ignore dilute / concentrated <br> Ignore hydrogen sulfate / hydrogensulfate <br> Accept makes lakes acidic / lowers pH of lakes <br> plants <br> plants/trees/vegetation/crops/named example <br> eg dies/stunted growth/harmed/damaged/poisoned <br> Ignore deforestation <br> Ignore leaching minerals <br> fish <br> fish/aquatic animals/pond life/marine life/named example <br> eg dies/stunted growth/harmed/damaged/poisoned <br> Ignore references to just animals <br> Accept <br> limestone <br> limestone/marble reacts/corrodes/is eaten away <br> NOT just buildings <br> Ignore rusts or physical process such as erosion / weathering <br> / wearing away / dissolving <br> Accept destroys for adverse effect in all of above | 2 2 |
|  |  | Total 17 marks |  |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 7 a | A (addition) |  | 1 |
| b | A (a molecule used to make a polymer) |  | 1 |
|  | propene | M1 chain of two carbons joined by single bond AND both continuation bonds <br> M2 one $\mathrm{CH}_{3}$ group in any position AND three H atoms <br> Do not penalise bond to H of $\mathrm{CH}_{3}$ Reject any structure with double bond Allow multiple repeat units if correct Three or more $\mathrm{CH}_{2}$ groups linked together scores 0/2 <br> Ignore brackets and subscripted n | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ |
| d |  | Accept Cl in any position Ignore bond angles Ignore brackets / n | 1 |



| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 8 a | pipette |  | 1 |
| b | B (pink to colourless) |  | 1 |
| c | correct reference to one of these: <br> - number of colours <br> - end point/colour change (accept neutral point) | Examples: <br> phenolphthalein has only two colours / only one colour change <br> / negative statement eg does not have a range of colours <br> / UI has several colours/more than one colour change <br> sharp / definite / sudden / quick / not gradual / needs only one drop <br> / converse for UI | 1 |
| d | M1 (after) <br> answer) 24.15 (only this <br> M2 (before)  <br> answer) $\quad 2.30$ (only this | Award 1 mark for both burette readings correct but in wrong order <br> CQ on after and before readings <br> In M3, penalise answer not to 2 dp unless penalty already applied in M2 | 3 |


| Question <br> number | Answer | Notes | Marks |
| :---: | :---: | :--- | :---: |
| 8 | $\mathrm{e} \quad \mathrm{i}$ | ticks in columns 2 and 4 |  |
| ii | M1 $\frac{26.30+26.40}{2}$ | CQ on ticked results <br> If no results ticked, award M1 only if columns 2 and 4 averaged <br> If only one result ticked, no marks can be awarded in (e) <br> CQ on results averaged <br> Answer must be to 2 dp <br> M2 subsumes M1 | 1 |

\begin{tabular}{|c|c|c|c|}
\hline i
ii
iii \& \[
\begin{aligned}
\& \text { M1 } \frac{0.18(0) \times 25(.0)}{1000} \\
\& \text { M2 } 0.0045(0) \\
\& (0.0045 \div 3=) 0.0015(0) \\
\& \text { M1 } \quad \frac{0.0015 \times 1000}{28.3(0)} \\
\& \text { M2 } \quad 0.053(0)
\end{aligned}
\] \& \begin{tabular}{l}
In part (f): \\
- accept values in standard form, eg \(4.5 \times 10^{-3}\) \\
- do not accept unevaluated fractions, eg \(0.0045 \div 3\) in (ii) \\
- do not penalise too many sig figs \\
- correct answer without working scores 2 marks in (i) and (iii) \\
- penalise missing use of 1000 in (i) and (iii) once only \\
Award 1 mark for 4.5 \\
CQ on answer to (i) \\
CQ on answer to (ii) \\
Award 1 mark out of 2 for 0.000053 \\
Award 1 mark out of 2 for 0.05 \\
If correct final answer obtained by omission of 1000 in both (i) and (iii), award marks of 1,1,2
\end{tabular} \& 2

1
2 <br>
\hline \& \& Total \& <br>
\hline
\end{tabular}

| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 9 a | A simple molecular <br> B giant covalent <br> C giant metallic <br> D giant ionic |  | 4 |
| b i <br> ii | M1 electron transfer AND correct direction <br> M2 magnesium (atoms) lose 2 electrons <br> M3 (each) chlorine (atom) gains an electron | If any reference to sharing electrons, $0 / 3$ <br> If any reference to covalent bonds, MAX 2 <br> Penalise atoms in place of electrons each time <br> Accept two chlorine (atoms) gain two electrons Reject chloride in place of chlorine <br> M2 and M3 both correct also scores M1 <br> M1 for electronic configuration of $\mathrm{Mg}^{2+}$ ion <br> M2 for electronic configuration of $\mathrm{Cl}^{-}$ion <br> M3 for both charges correct <br> Accept any combination of dots and crosses Charges can be shown anywhere so long as there is no ambiguity <br> Brackets not essential <br> Ignore 2 before or after chloride ion <br> $0 / 3$ for any diagram showing shared electrons <br> Ignore diagrams showing electron transfer - <br> mark only the ions formed <br> Penalise missing inner shell(s) once only <br> If two $\mathrm{Cl}^{-}$ions shown, both must be correct | 3 <br> 3 |

$\square$

| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 9 c |  | M1 for 4 electrons in both $\mathrm{C}=\mathrm{O}$ bonds <br> These can be shown in a vertical or horizontal line <br> M2 all other electrons correct <br> M2 DEP on M1 <br> Accept any combination of dots and crosses <br> Ignore inner electrons even if wrong <br> Ignore circles around atoms <br> Non-bonding electrons do not need to be paired | 2 |
| d i | M1 positive ions / cations <br> M2 delocalised electrons / sea of electrons <br> M3 crystal / lattice / regular arrangement / array / giant structure / OWTTE | Not just ions <br> Reject reference to protons/nuclei/atoms in place of cations for M1, but M2 and M3 can still be awarded <br> Ignore free electrons <br> Ignore layers / planes / rows or similar Accept (electrostatic) attraction between positive ions and electrons <br> 0/3 if reference to ionic bonding / covalent bonding / molecules <br> / intermolecular forces (eg van der Waals') | 3 |


| Question <br> number | Answer | Notes | Marks |
| :---: | :---: | :---: | :--- | :---: |
| $9 \quad \mathrm{~d}$ ii | M1layers / sheets / planes / rows <br> AND <br> (positive) ions / atoms / particles <br> slide (over each other) | Allow OWTTE, eg slip / flow / shift / roll / move <br> M2 DEP on mention of EITHER layers or equivalent <br> OR mention of ions or equivalent <br> Do not award M2 if protons / electrons / nuclei / <br> molecules in place of ions, etc <br> If reference to ionic bonding / covalent bonding / <br> molecules / intermolecular forces, no marks | 2 |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 10 a | M1 volume <br> M2 concentration | Ignore amount of solution for both, but accept amount in $\mathrm{cm}^{3}$ for M1 <br> Reject volume of gases <br> Allow mass of solution <br> Ignore strength <br> Ignore temperature / pressure <br> Accept in either order | 2 |
| b i ii | B D |  | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ |
| c | M1 filter (and dry) and weigh solid/A/it <br> M2 mass is (still) $1 \mathrm{~g} /$ mass is unchanged | Mark M1 and M2 independently <br> Accept separate/remove solid/A/it from reaction mixture and weigh it <br> Accept reverse argument, eg if it was a reactant, the mass would decrease | 2 |



| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 11 a i ii | (pressure) low <br> fewer (gas) moles/molecules/particles on left OR <br> fewer moles/molecules/particles of reactants OR <br> forward reaction produces more moles/molecules/particles | Accept statement about numbers of moles / molecules, <br> eg 3 on left and 5 on right <br> Accept more (gas) moles/molecules/particles on right <br> / more moles/molecules of products but not just more products <br> Ignore references to favouring right hand side/forward direction /endothermic reaction/equilibrium shifting to right <br> /Le Chatelier's principle <br> /low pressure favours side with more moles <br> Ignore references to rate / collisions <br> If answer to (i) is high, no ECF in (ii) <br> If no answer to (i), mark can be awarded in (ii) | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ |
| b i | (temperature) high <br> (forward) reaction is endothermic / has positive $\Delta H$ value <br> / absorbs heat | Accept reverse reaction is exothermic / has negative $\Delta H$ value / gives out heat Ignore favours the endothermic reaction Ignore references to rate / collisions <br> If answer to (i) is low, no ECF in (ii) If no answer to (i), mark can be awarded | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ |


|  |  |  |
| :--- | :--- | :--- |
| c | $\Delta H$ (value)/enthalpy change is small / smaller <br> / less (than for reactions 1 and 3) <br> OR <br> reaction not very exothermic / has lowest <br> enthalpy change | Accept energy in place of enthalpy <br> Accept closer to zero <br> Reject $\Delta H$ less negative / less exothermic / less <br> heat given out <br> Ignore references to temperature change / <br> pressure <br> Ignore less energy / not a lot of energy needed |


| Questio n number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 11 d | (rate) increases <br> M1 particles closer together <br> M2 particles collide more frequently | Ignore references to yield / equilibrium / chances of collision in <br> (i) and (ii) <br> Mark M1 and M2 independently <br> Accept more particles in a given volume/space <br> /particles have less space/room (to move in) <br> Ignore area in place of volume/space <br> Ignore references to just numbers of gas moles/molecules <br> Not just more (successful) collisions <br> Accept more (successful) collisions per unit time / per second, etc <br> $0 / 2$ if references to particles moving faster/having greater energy <br> If answer to (i) is decreases, no ECF in (ii) <br> If no answer or ignored answer to (i), marks can be awarded | 1 2 |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 11 e | Accept working by mass ratio OR moles routes Mass ratios: <br> OR <br> Moles: <br> M1 $\quad n\left(\mathrm{CH}_{3} \mathrm{OH}\right)=64000 \div 32=2000(\mathrm{~mol})$ <br> M2 $n\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=2000(\mathrm{~mol})$ <br> M3 $\mathrm{m}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=2000 \times 60=120000 \mathrm{~g} / 120$ <br> (kg) | Award M1 for 32 and 60 seen anywhere, except as the result of incorrect calculations <br> Mark M2 and M3 consequentially on $M_{r}$ values <br> Allow working in 'kilomoles' even if mol given as unit or no unit for intermediate answers, eg $64 \div 32=2(\mathrm{kmol} / \mathrm{mol})$ <br> CQ on M1 <br> CQ on M2 <br> Correct final answer with or without working scores 3 marks Accept 120000 g if unit shown | 3 |

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom

